
Joining tables with dplyr
Emily Malcolm-White

nycflights23 dataset

#LOAD PACKAGES
library(tidyverse)

#LOAD DATA
library(nycflights23)
data("flights")

nycflights23 contains information about all 435352 flights departing NYC in 2023.
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Join dataframes

Matching key variable names

Some airline names might be easy to guess (ie. “UA” is United Airlines), but what airlines
have the code “VX”, “HA”, and “B6”? Data on airline codes is provided in a dataset called
airlines.

#data("airlines")

We want to have all this information in one data frame instead of two separate data frames.

The variable carrier in flights match the variable carrier in the airlines dataset – this
is our key variable. In this case, they have the same name, but this doesn’t necessarily have
to be true.

flights_joined <- flights %>%
inner_join(airlines, by="carrier")

Different key variable names

Say instead you are interested in the destinations of all domestic flights departing NYC in
2013, and you ask yourself questions like: “What cities are these airports in?”, or “Is”ORD”
Orlando?”

data("airports")

In airports the airport code is in faa, whereas in flights the airport codes are in origin
and dest.

flights_with_airport_names <- flights %>%
inner_join(airports, by = c("dest" = "faa"))

Let’s construct the chain of pipe operators %>% that computes the number of flights from
NYC to each destination, but also includes information about each destination airport:

named_dests <- flights %>%
group_by(dest) %>%
summarize(num_flights = n()) %>%
arrange(desc(num_flights)) %>%
inner_join(airports, by = c("dest" = "faa")) %>%
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rename(airport_name = name)
named_dests

# A tibble: 114 x 9
dest num_flights airport_name lat lon alt tz dst tzone
<chr> <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 BOS 19036 General Edward Lawren~ 42.4 -71.0 20 -5 A Amer~
2 ORD 18200 Chicago O'Hare Intern~ 42.0 -87.9 672 -6 A Amer~
3 MCO 17756 Orlando International~ 28.4 -81.3 96 -5 A Amer~
4 ATL 17570 Hartsfield Jackson At~ 33.6 -84.4 1026 -5 A Amer~
5 MIA 16076 Miami International A~ 25.8 -80.3 8 -5 A Amer~
6 LAX 15968 Los Angeles Internati~ 33.9 -118. 125 -8 A Amer~
7 FLL 14239 Fort Lauderdale Holly~ 26.1 -80.2 9 -5 A Amer~
8 CLT 12866 Charlotte Douglas Int~ 35.2 -80.9 748 -5 A Amer~
9 DFW 11675 Dallas Fort Worth Int~ 32.9 -97.0 607 -6 A Amer~

10 SFO 11651 San Francisco Interna~ 37.6 -122. 13 -8 A Amer~
# i 104 more rows

Multiple Key variables

In order to join the flights and weather data frames, we need more than one key variable:
year, month, day, hour, and origin. This is because the combination of these 5 variables
act to uniquely identify each observational unit in the weather data frame: hourly weather
recordings at each of the 3 NYC airports.

data("weather")

flights_weather_joined <- flights %>%
inner_join(weather, by = c("year", "month", "day", "hour", "origin"))

Why is this useful?

Updating labels:

flights %>%
ggplot(aes(x = carrier, fill = origin)) +

geom_bar() +
coord_flip()
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#VS

flights %>%
inner_join(airports, by = c("origin" = "faa")) %>%
rename(origin_airport = name) %>%
inner_join(airlines, by = c("carrier")) %>%
rename(carrier_name= name) %>%

ggplot(mapping = aes(x = carrier_name, fill = origin_airport)) +
geom_bar() +
coord_flip()
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Exploring relationships between variables in separate tables:

flights_weather_joined %>%
filter(dep_delay >0) %>%
ggplot(aes(x=temp, y=dep_delay)) +
geom_point()
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Different Types of Joins

Common Issues with Joining

• duplicate keys
• lowercase/uppercase
• symbols or whitespace
• Make sure the join fields are the same format.

External Resources

• R for Data Science, Joins
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https://r4ds.hadley.nz/joins


Figure 1: Credit: RStudio
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