
Webscraping Text
Emily Malcolm-White

#LOAD PACKAGES
library(tidyverse)
library(rvest)

Webscraping Text

Let’s look at the top 50 feature films in the first 7 months of 2023 listed on IMBD

URL <- read_html("https://www.imdb.com/search/title/?title_type=feature&year=2023-01-01,2023-07-31")

Notice that the data for all these films isn’t housed inside a <table> element!

Titles

For example, check out the first few lines of html code for Oppenheimer:

1

https://www.imdb.com/search/title/?title_type=feature&year=2023-01-01,2023-07-31

<h3 class="lister-item-header">
1.

<a href="/title/tt15398776/?ref_=adv_li_tt"
>Oppenheimer

(2023)
</h3>

In this case, we want to look for the class lister-item-header AND then pull the text inside
the <a> (link) tag.

html_elements(".lister-item-header a")

Tip

In this case, we want ALL titles so we used html_elements(). If we had only wanted
the first title we would have used html_element()

Scrape IMBD for the titles of the 50 most popular feature films in the first 7 months of 2023.

title_data <- URL %>%
html_elements(".lister-item-header a") %>%
html_text()
#
title_data

Runtime

Scrape IMBD for the runtime of the 50 most popular feature films so far in 2023.

Check out the relevant HTML code for Oppenheimer:

<p class="text-muted ">
R

|
180 min
|

Biography, Drama, History

</p>

In this case, we need to reference the class text-muted AND the class runtime.

2

URL %>%
html_nodes(".text-muted .runtime") %>%
html_text()

Alternatively, we could have called class text-muted AND the 3rd span, but it’s easier and
likely more accurate to ask for the class runtime in case runtime is missing for some reason.

Maybe we want to keep the min on the end, but it forces it into being a stringr rather than a
number which makes it difficult to sort or filter.

library(readr)
need this package for parse_number()

Figure 1: Artwork by @allisonhorst

runtime_data <- URL %>%
html_nodes(".text-muted .runtime") %>%
html_text() %>%
parse_number() %>% #this picks out only the numbers (and drops characters, in this case, "mins")
as.numeric()
#
runtime_data

3

Ratings

Scrape IMBD for the ratings of the 50 most popular feature films in the first 7 months of
2023.

Check out the relevant HTML code for Oppenheimer:

<div class="inline-block ratings-imdb-rating" name="ir" data-value="8.6">

8.6

</div>

Let’s scrape it!

rating_data <- URL %>%
html_elements(".ratings-imdb-rating strong") %>%
html_text() %>%
as.numeric()
#
rating_data

Warning

Notice that there are only 49 ratings listed, not 50! There is no way to figure out which
one is missing besides doing it by hand…
Which one is it?
Once we figure out which one is it is, we should should add a blank element for the rating
for that movie using the append function.
rating_data <- append(rating_data, values=FALSE, after=11)

It’s Killers of the Flower Moon (#32)!

#rating_data <- append(rating_data, values=NA, after=31)

Notice how it is the correct length (50) now!

Number of Votes

Scrape IMBD for the number of votes of the 50 most popular feature films in the first 7 months
of 2023.

Relevant code for Oppenheimer:

4

<p class="sort-num_votes-visible">
Votes:
391,689

</p>

Let’s scrape it!

votes_data <- URL %>%
html_elements(".sort-num_votes-visible span:nth-child(2)") %>%
html_text() %>%
parse_number() %>%
as.numeric()
#
votes_data

Warning

Same issue as before! We were supposed to have 50 but only got 49. It’s Killers of the
Flower Moon (#32), again!

#votes_data <- append(votes_data, values=NA, after=31)

Metascore

Scrape IMBD for the number of votes of the 50 most popular feature films in the first 7 months
of 2023.

Relevant code for Oppenheimer:

<div class="inline-block ratings-metascore">
88

Metascore
</div>

Let’s scrape it!

metascore_data <- URL %>%
html_elements(".metascore") %>%
html_text() %>%
parse_number() %>%

5

as.numeric()
#
metascore_data

Warning

Yikes! Now we only have 41 when we should have 50.
We could manually go through and figure out which 9 are missing or we could reassess
how important the metascore data is to us…

Combining it all together into a data frame!

We can combine all this data into one data frame:

movies <- data.frame(Title = title_data,
Runtime = runtime_data,
Rating = rating_data,
Votes = votes_data
)
#
movies

Make a list OR Make a plot!

ggplot(movies, aes(x=runtime_data, y=rating_data)) +
geom_point() +
theme_minimal() +
xlab("Runtime (in minutes)") +
ylab("IMDB Rating")

6

	Webscraping Text
	Titles
	Runtime
	Ratings
	Number of Votes
	Metascore

	Combining it all together into a data frame!

